慢性荨麻疹发病机制的研究进展

慢性荨麻疹发病机制的研究进展

Abstract

慢性荨麻疹在临床十分常见,但目前关于慢性荨麻疹的发病机制尚未完全阐明。多数患者因找不到确切病因,造成误诊或治疗不及时。既往研究发现肥大细胞活化是慢性荨麻疹发病的中心环节,遗传、自身免疫、凝血功能紊乱和感染等因素也可能参与慢性荨麻疹的病理生理学过程。随着研究的深入,更多的免疫与非免疫机制在慢性荨麻疹发病中的作用逐步被揭示,如荨麻疹微环境中免疫细胞的相互作用、肠道菌群与代谢、神经免疫、环境因素和激素等。阐明慢性荨麻疹的发病机制有助于发现新的治疗靶点,为临床提供多样化的诊疗思路。

Keywords: 慢性荨麻疹, 发病机制, 自身免疫, 肥大细胞

Abstract

Chronic urticaria is very common in clinic, but its pathogenesis is not fully elucidated. Most patients can’t find the exact cause, resulting in misdiagnosis or delayed treatment. Previous studies have found that mast cell activation is the central link in the pathogenesis of chronic urticaria. Genetics, autoimmune, coagulation disorders, and infection may also be involved in the pathophysiological process of chronic urticaria. With the deepening of research, more immune and non-immune mechanisms have been gradually revealed in the pathogenesis of chronic urticaria, such as the interaction of immune cells in the microenvironment of urticaria, intestinal flora and metabolism, neuroimmunity, environmental factors and hormones. Clarifying the pathogenesis of chronic urticaria will help to find more treatment targets and provide more diversified ideas for clinical diagnosis and treatment.

Keywords: chronic urticaria, pathogenesis, autoimmune, mast cell

慢性荨麻疹(chronic urticaria,CU)表现为反复发作超过6周的风团和瘙痒[1],伴或不伴血管性水肿,是一种常见的免疫相关性皮肤疾病。CU的全球患病率为0.1%~3.4%,中国人群的患病率为2.6%[2]。由于反复发作,迁延不愈,CU会降低患者及其家属的生活质量[3]。根据有无特定的诱发因素,CU分为慢性自发性荨麻疹(chronic spontaneous urticaria,CSU)和慢性诱导性荨麻疹(chronic inducible urticaria, CIndU)[4]。CSU约占CU的2/3,不同类型CU可合并存在[5]。虽然目前一致认为肥大细胞(mast cell,MC)是其病理生理过程中的关键效应细胞,可通过免疫与非免疫机制被诱导活化,但CU的发病机制复杂,近期研究发现CU发病过程中还涉及多种炎症因子、免疫细胞及免疫微环境等。

1.

CSU的发病机制

1.1. 自身免疫

自身免疫在CSU中起关键作用,是CSU最主要的机制之一。MC通过I型自身免疫反应和IIb型自身免疫反应活化并脱颗粒,2种类型的CSU存在不同的临床特征。

I型自身免疫反应又称自身过敏反应,其特征是具有抗自身抗原的IgE抗体[6]。目前已发现的针对自身抗原的IgE抗体包括抗甲状腺过氧化物酶(thyroid peroxidase,TPO)抗体、抗甲状腺球蛋白(thyroglobulin,TG)抗体、抗双链DNA(double-stranded DNA,dsDNA)抗体、抗白细胞介素(interleukin,IL)-24抗体、抗组织因子(tissue factor,TF)抗体等[6-8]。IgE自身抗体通过其高亲和力受体抗IgE Fc受体(IgE Fc receptor,FcεR)I与相应的自身抗原交联导致MC的活化,激活下游的一系列生化反应,引发CSU[9]。

IIb型自身免疫反应的特征是具有抗IgE的IgG自身抗体和/或抗FcεRI的IgG自身抗体[6]。FcɛRI与补体C5a受体均在MC和嗜碱性粒细胞上表达,且被证实在IgG-抗FcɛRI介导的脱颗粒中发挥作用[10]。IIb型自身免疫反应CSU的诊断标准[11]:1)自体血清皮肤试验(autologous serum skin test,ASST)阳性;2)体外嗜碱性粒细胞组胺释放试验(basophil histamine release assay,BHRA)或嗜碱性粒细胞活化标志物阳性;3)针对抗IgE的IgG自身抗体和/或抗FcεRI的IgG自身抗体的免疫测定阳性。PURIST研究[12]的结果表明,约88%的CSU患者至少具有3个IIb型自身免疫反应CSU诊断标准中的1个,不到10%的CSU患者3个标准全部符合,并且这些患者往往表现为更严重的病情、低水平的总IgE和高水平的TPO抗体。此外,研究[13]发现针对FcεRIα的IgM和/或IgA自身抗体可能有助于IIb型自身免疫反应,并且IgM-抗FcɛRIα水平升高与外周血嗜碱性粒细胞计数和嗜酸性粒细胞计数降低有关,是CSU疾病高活动性的标志。

多种自身免疫性疾病可与CSU伴发,最常见的是桥本甲状腺炎(≥21%)和白癜风(2%)[14]。CSU患者合并自身免疫性疾病与女性、自身免疫性疾病家族史以及甲状腺功能减退/亢进的发生率较高有关,并且自身免疫性疾病与IIb型自身免疫反应CSU有关。此外,全基因组关联研究[15]结果显示CSU与自身免疫性疾病之间具有遗传重叠,CSU的易感遗传因素主要通过与自身免疫特征的关联来表现。

1.2. 免疫细胞与炎症因子网络的相互作用

1.2.1. MC活化是CSU的中心环节

MC是CSU的关键效应细胞[4]。MC来自骨髓造血祖细胞,随后迁移到外周组织,并在干细胞因子(stem cell factor,SCF)和IL-3的影响下进行终末分化[16]。MC存在3种亚型:MCT(胰蛋白酶阳性但乳糜酶阴性)、MCTC(胰蛋白酶和乳糜酶均阳性)和MCC(胰蛋白酶阴性但乳糜酶阳性)[17-18]。MCT通常见于肠、肺和鼻等的黏膜组织,必需依赖T细胞才能增殖,MCT数量增加通常与过敏性疾病有关;MCTC主要位于皮肤和胃肠道黏膜下,增殖不依赖于淋巴细胞;MCC可见于腋窝淋巴结、肺黏膜和肠黏膜组织,由于较少被关注,MCC的功能及其在疾病中的作用机制尚不明确,有待进一步研究[18-19]。

MC主要由针对自身变应原的IgE或FcεRI α链的自身抗体通过FcεRI激活,胸腺基质淋巴细胞生成素(thymic stromal lymphopoietin,TSLP)、血浆衍生外泌体、IL-33、IL-4、IL-13、IL-5、补体C5a和MAS相关G蛋白偶联受体-X2(Mas-related G-protein coupled receptor-X2,MRGPRX2)也可激活MC[20-21]。MC活化后释放的各种介质可导致感觉神经激活、血管扩张、血浆外渗以及参与荨麻疹的细胞募集,引起CSU的症状和体征(皮肤瘙痒和血管水肿)[22]。研究发现腺苷[23]、动力相关蛋白1(dynamin-related protein 1,Drp1)[24]和琥珀酸受体1(succinate receptor 1,SUCNR1)[25]也可调节MC的活性,但Drp1和SUCNR1在CSU中的这种作用有待验证。CSU患者的血浆腺苷水平升高,并且腺苷水平可预测重度CSU患者对非镇静H1抗组胺药的无应答者[23]。

1.2.2. 嗜碱性粒细胞和嗜酸性粒细胞参与CSU

嗜碱性粒细胞与MC一样,可以产生组胺、白三烯和细胞因子等,参与CSU风团的诱导。嗜碱性粒细胞还表达FcεRI,可被抗FcεRI自身抗体激活[26]。在CSU患者中经常观察到外周血嗜碱性粒细胞减少,可能是嗜碱性粒细胞从循环迁移到组织的结果[27-28]。奥马珠单抗可能通过降低嗜碱性粒细胞上FcεRI和IgE的密度,使嗜碱性粒细胞从外周血迁移到组织的数量减少,外周血嗜碱性粒细胞增多,从而达到治疗CSU的作用[29]。而血液循环中嗜碱性粒细胞数量降低则提示CSU患者对奥马珠单抗反应不佳[30]。

嗜酸性粒细胞表达低亲和力的IgE受体FcεRII/CD23,可被IgG-抗FcεRII/CD23结合并激活[31]。嗜酸性粒细胞可能通过3种方式参与CU发病:1)产生SCF,促进组织中MC的募集和局部成熟;2)嗜酸性粒细胞蛋白主要碱性蛋白、嗜酸性粒细胞阳离子蛋白和嗜酸性粒细胞过氧化物酶可促进MC脱颗粒;3)活化后表达TF,TF是凝血级联反应中凝血酶的主要激活因子[32]。此外,研究[33]发现10%的CSU患者出现嗜酸性粒细胞减少症,且与IIb型自身免疫反应、疾病高活动度和治疗反应差有关。

1.2.3. T细胞在CSU中起调节作用

辅助性T(T help,Th)1/Th2和Th17相关细胞因子的水平在CSU中显著升高,并与疾病的活动度相关[34-35]。Th1反应通常与ASST阳性有关[34],但在Prosty等[36]的研究中,ASST阳性和ASST阴性患者之间的Th1细胞丰度评分没有差异;Th2细胞产生IL-4、IL-5和IL-13等多种细胞因子,可刺激IgE的产生及诱导MC、嗜碱性粒细胞和嗜酸性粒细胞的激活[37]。Th17通过分泌细胞因子IL-6促进MC的增殖,并诱导其趋化[38]。调节性T细胞(regulatory cells,Tregs)靶向许多不同的免疫细胞亚群和组织,可防止炎症反应过度并支持组织修复和稳态[39]。体内外证据表明Tregs通过OX40-OX40配体信号抑制MC脱颗粒[40]。研究[41]表明,血液循环中CD4+CXCR5+细胞比例、滤泡辅助性T(T follicular helper,Tfh)细胞比例和Tfh/滤泡调节性T细胞的比值异常均与CSU严重程度呈正相关,提示这些细胞可能参与CSU发病的免疫机制。

1.2.4. 免疫细胞相互作用共同促进CSU的发生和发展

CU的发病机制涉及包括免疫细胞在内的多种细胞(如血管内皮细胞、神经元)的共同参与(图1)。先天免疫和适应性免疫在CSU中存在极其复杂的相互作用,MC是先天免疫和适应性免疫之间的重要纽带[42]:活化的MC通过释放炎症介质和趋化因子[组胺、前列腺素D2、基质金属蛋白酶-9和趋化因子C-X-C模体配体(C-X-C motif ligand,CXCL)1/2等]促进嗜酸性粒细胞、嗜碱性粒细胞、中性粒细胞和T细胞向皮肤迁移[43-46],来自MC的IL-4、TSLP是先天淋巴样细胞的共刺激细胞因子[47];嗜碱性粒细胞和T细胞产生IL-4可影响MC的趋化[48-49];单核细胞通过趋化因子C-C模体配体2(C-C motif ligand 2,CCL2)/单核细胞趋化蛋白-1(monocyte chemotactic protein 1,MCP-1)作用于MC和嗜碱性粒细胞,促进其激活[50];巨噬细胞可通过分泌IL-6促进MC增殖和成熟,并释放干扰素-λ1(interferon-λ1,IFN-λ1)调节T细胞的发育[51, 52];B细胞产生的IgE/IgG抗体与MC和嗜碱性粒细胞的FcεRIα结合并导致一系列的活化反应[53],来自嗜碱性粒细胞的IL-4和IL-6可增强B细胞的存活和增殖[54];内皮细胞产生的SCF影响MC的发育和成熟,通过迁移抑制因子激活巨噬细胞,通过IL-6、IL-18、肿瘤坏死因子(tumor necrosis factor,TNF)-α和脂肪因子与中性粒细胞相互作用参与CSU的发病[55];免疫细胞和神经元之间同样存在强烈的相互作用[56-57]。

图1.

Open in a new tab

免疫细胞在CSU患者外周血和组织中的相互作用

Figure 1 Interaction of immune cells in peripheral blood and tissue of patients with CSU

Innate immunity and adaptive immunity play extremely complex interactions in CSU through soluble inflammatory factors, microvesicles or cell-to-cell contact. Endothelial cells can participate in the maturation or activation of immune cells through various cytokines, and immune cells in peripheral blood migrate under the action of chemokines released by mast cells. There is a complex interaction between neurons and immune cells in itching and inflammation. CSU: Chronic spontaneous urticaria; IL: Interleukin; MMP-9: Matrix metalloproteinase-9; CXCL: C-X-C motif ligand; CCL2: C-C motif ligand 2; TF: Tissue factor; MCP-1: Monocyte chemotactic protein 1; PGD2: Prostaglandin D2; SCF: Stem cell factor; VCAM-1: Vascular cell adhesion molecule 1; VEGF: Vascular endothelial growth factor; C5a: Complement 5a; MIF: Migration inhibitory factor; IFN-λ1: Interferon-λ1; LTE4: Leukotriene E4; TSLP: Thymic stromal lymphopoietin; MBP: Major basic protein; ECP: Eosinophil cationic protein; EPO: Eosinophil peroxidase; NGF: Nerve growth factor; SP: Substance P; CGRP: Calcitonin gene-related peptide; ILC2: Group 2 innate lymphocytes; GM-CSF: Granulocyte-macrophage colony-stimulating factor.

1.3. 神经-免疫机制

在CSU中,神经元通过释放神经肽如P物质和降钙素基因相关肽(calcitonin gene- related peptide,CGRP)等来调节MC的功能,可能导致血管扩张、血浆外渗;免疫细胞释放的炎症介质和细胞因子[如组胺、IL-31和神经生长因子(nerve growth factor,NGF)]等作用于神经元,可导致神经源性炎症和瘙痒症状[56-57]。MRGPRX2在皮肤MC上高度表达,可由神经肽如P物质激活,并导致MC释放组胺[58],进而引起CSU患者皮肤反应性的增高[59]。另有研究[60]发现CSU患者的焦虑与抑郁风险是对照组的6倍,CSU对焦虑或抑郁的影响与瘙痒和睡眠障碍有关,有效缓解瘙痒可以促进自然睡眠,从而改善CSU患者的情绪[61]。

1.4. 肠道菌群通过代谢和免疫调控参与CSU的发病

近年来,肠道菌群与CSU之间的关联逐渐受到关注。研究发现CSU患者和健康对照组之间肠道微生物群的α多样性[62]和β多样性[63]存在差异。通过16S核糖体RNA(ribosomal RNA,rRNA)基因测序发现CSU和皮肤划痕症(symptomatic dermographism,SD)患者由于有益菌(主要是产短链脂肪酸菌)的减少,导致短链脂肪酸的生成减少而有害代谢产物(脂多糖)的产生增加[64],从而通过促进Th2细胞的分化,IgE的产生激活MC,参与CSU的发病。研究[65]发现CU患者血浆脂质代谢特征与健康对照组不同:CU患者血浆磷脂酰丝氨酸、磷脂酰乙醇胺和磷脂酰甘油水平显著升高,而磷脂酰胆碱水平显著下降。以上研究表明CSU患者肠道微生物群组成和代谢物的紊乱以及它们之间的相互作用可能参与了CSU的发病。此外,笔者所在研究组[66]发现毛螺菌科及其下属类群是抗组胺药治疗应答者和无应答者肠道微生物群的主要差异,应答者的毛螺菌科丰度高于无应答者,提示毛螺菌科是抗组胺药在CSU患者中的疗效预测标志。

1.5. 其他机制

部分CSU患者存在家族史,提示遗传因素在CSU的发病中可能存在潜在作用。研究[67]通过飞行质谱法对ORAI钙释放激活钙调节因子1(ORAI calcium release-activated calcium modulator 1,ORAI1)多态性进行基因分型,发现ORAI1基因单核苷酸多态性(single nucleotide polymorphism,SNP) rs12320939和rs3741596与CSU易感性相关,ORAI1基因编码的Orai1参与MC脱颗粒、白三烯分泌、组胺释放以及TNF-α分泌。补体C5a受体1(complement component 5a receptor 1,C5AR1)-1330T等位基因与CSU易感性相关,可作为CSU的危险因素[68],Fcε受体Ia(Fc epsilon receptor Ia gene,FCER1A) rs2298805等位基因与CSU风险和总IgE血清浓度有关[69]。成年CSU患者与成年健康参与者存在不同的全基因组DNA甲基化谱[70],表明表观遗传学可能参与CSU的发生和发展。miRNA-196a2位点SNP可能与CSU存在关联,rs11614913位点SNP可能会增加CSU的发病风险[71]。此外,研究[72]发现经地氯雷他定治疗后出现镇静的患者中,组胺受体H1(histamine receptor H1,HRH1) rs901865 G等位基因的频率明显高于rs901865 A等位基因,提示HRH1基因多态性可能与CSU患者地氯雷他定治疗后的镇静副作用有关。

环境因素可能参与CSU的发病,Wang等[73]发现细颗粒物(particulate matter 2.5,PM2.5)通过Gadd45b/促分裂原活化蛋白激酶4(mitogen-activated protein kinase 4,MEKK4)/c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)途径调节活性氧的产生,促进IgE介导的MC活化。此外,人类广泛暴露于全氟和多氟烷基物质(per- and polyfluoroalkyl substances,PFAS)环境中,PFAS可能通过食物和饮用水被人体吸收[74],通过因果中介分析发现IL-4是全氟庚酸与CSU相关性的部分中介(14.8%),血清中的PFAS水平升高与CSU发病风险增加相关[75]。因此,持续暴露在不利环境因素中可能会导致CSU的发病并加剧其病情。

非免疫学致病因素也参与CSU的发病。例如屋尘螨可能穿过皮肤屏障,直接触发神经元释放P物质,导致MC脱颗粒[76];性激素可能通过遗传[77]、微生物[78]和环境因素[79]的复杂网络导致女性的CSU患病率较男性高。此外,研究[80]发现凝血-补体系统可通过下游的MC和/或嗜碱性粒细胞激活轴参与CSU的发病。维生素D[81]、金黄色葡萄球菌[82]、热激蛋白[83]和硫醇/二硫化物稳态[84]等也被发现通过各种机制参与CSU的发生。

2.

CIndU发病机制研究进展

CIndU的确切发病机制仍不清楚,但MC的激活、脱颗粒以及随后的炎症介质的释放被认为是关键因素,其中组胺在所有类型的CIndU中都发挥致病作用[85]。肠道生态失调及代谢异常可能参与SD的发生[64, 86],过敏性炎症和免疫失衡在SD中可能也很关键[87]。另外,最近发现了SD的新变种——食物加重SD和食物依赖性SD[88]。除组胺外,胆碱能性荨麻疹的发病可能还涉及胆碱能药物(如乙酰胆碱)、汗液过敏、自体血清因子(如抗IgE的IgG抗体)、汗腺导管闭塞和少/无汗症[89],其中少/无汗症可能与汗腺中毒蕈碱乙酰胆碱受体M3(M3 muscarinic acetylcholine receptor,CHRM3)和乙酰胆碱酯酶低表达有关[90]。冷凝集素和冷球蛋白与寒冷性荨麻疹的发病和病程有关[91],最近,Kulthanan等[92]发现了食物依赖性寒冷性荨麻疹,食物摄入对其他类型的CIndU的影响值得进一步探讨研究。热性荨麻疹的发病机制尚不明确,潜在的触发因素包括温水浴、热空气和阳光照射[93]。日光性荨麻疹的研究十分有限,众多假设(如光过敏、紫外线介导的免疫抑制和遗传/环境因素影响日光性荨麻疹等)有待进一步验证[94]。Zhao等[95]发现来自中国或德国的115例年轻参与者的振动性血管性水肿总体患病率超过14.4%,比预测的更为常见,并且与黏附类G蛋白偶联受体(adhesion G protein-coupled receptor E2,ADGRE2)基因突变无关。水源性荨麻疹的机制已有几种假设:1)水与皮脂或皮脂腺的相互作用;2)涉及水溶性表皮抗原;3)水是表皮或真皮抗原的载体[96]。真皮和皮下组织中的MC被认为是延迟性压力性荨麻疹的关键细胞驱动因素[97]。接触性荨麻疹可由IgE或T细胞介导的免疫反应或非免疫反应引起[98]。

3. 结 语

目前对CU发病机制的研究越来越深入,MC的激活和脱颗粒是CSU发生的核心,自身免疫(IgE/IgG自身抗体)、细胞相互作用(包括免疫细胞在内的多种细胞如MC、嗜酸性粒细胞、嗜碱性粒细胞、T细胞、内皮细胞和神经元等通过炎症因子、微囊泡或细胞间接触发挥复杂的相互作用)、神经-免疫(通过皮肤瘙痒感觉神经介导的组胺依赖和组胺非依赖性瘙痒信号通路)、肠道微生物群(通过代谢和免疫紊乱)、遗传环境因素、凝血补体级联的激活等机制相互关联共同参与CSU的发病。在CIndU中,类似MC激活的机制包括自身过敏和/或自身免疫,可能起到一定作用。进一步的研究应侧重于鉴定MC和嗜碱性粒细胞的激活因子,阐明精神或心理疾病对CU的影响机制,确定不同疾病类型及其生物标志物,以发现更多潜在的治疗靶点,为CU的临床治疗提供新思路和新手段。

基金资助

国家自然科学基金(82173424,81974476)。

This work was supported by the National Natural Science Foundation of China (82173424, 81974476).

利益冲突声明

作者声称无任何利益冲突。

作者贡献

王佳怡 论文构思、撰写与修改;李捷 论文构思、指导与修改。所有作者阅读并同意最终的文本。

原文网址

http://xbyxb.csu.edu.cn/xbwk/fileup/PDF/2023101602.pdf

参考文献

1.

中华医学会皮肤性病学分会荨麻疹研究中心 . 中国荨麻疹诊疗指南(2022版)[J]. 中华皮肤科杂志, 2022, 55(12): 1041-1049. 10.35541/cjd.20220609. [DOI] [Google Scholar];

Centre for Urticaria Research, Chinese Society of Dermatology . Guideline for diagnosis and treatment of urticaria in China (2022)[J]. Chinese Journal of Dermatology, 2022, 55(12): 1041-1049. 10.35541/cjd.20220609. [DOI] [Google Scholar]

2.

Zhang X, Song XT, Zhang M, et al.

Prevalence and risk factors of chronic urticaria in China: a nationwide cross-sectional study[J]. Allergy, 2022, 77(7): 2233-2236. 10.1111/all.15287.

[DOI] [PubMed] [Google Scholar]

3.

Gonçalo M, Gimenéz-Arnau A, Al-Ahmad M, et al.

The global burden of chronic urticaria for the patient and society[J]. Br J Dermatol, 2021, 184(2): 226-236. 10.1111/bjd.19561.

[DOI] [PubMed] [Google Scholar]

4.

Zuberbier T, Abdul Latiff AH, Abuzakouk M, et al.

The international EAACI/GA²LEN/EuroGuiDerm/APAAACI guide- line for the definition, classification, diagnosis, and management of urticaria[J]. Allergy, 2022, 77(3): 734-766. 10.1111/all.15090.

[DOI] [PubMed] [Google Scholar]

5.

Mao MY, Yuan Y, Xiao YJ, et al.

Clinical difference between single subtype and mixed subtype chronic urticaria: a retrospective study[J]. Indian J Dermatol Venereol Leprol, 2022, 88(2): 171-176. 10.25259/IJDVL_257_20.

[DOI] [PubMed] [Google Scholar]

6.

Kolkhir P, Church MK, Weller K, et al.

Autoimmune chronic spontaneous urticaria: what we know and what we do not know[J]. J Allergy Clin Immunol, 2017, 139(6): 1772-1781.e1. 10.1016/j.jaci.2016.08.050.

[DOI] [PubMed] [Google Scholar]

7.

Schmetzer O, Lakin E, Topal FA, et al.

IL-24 is a common and specific autoantigen of IgE in patients with chronic spontaneous urticaria[J]. J Allergy Clin Immunol, 2018, 142(3): 876-882. 10.1016/j.jaci.2017.10.035.

[DOI] [PubMed] [Google Scholar]

8.

Cugno M, Asero R, Ferrucci S, et al.

Elevated IgE to tissue factor and thyroglobulin are abated by omalizumab in chronic spontaneous urticaria[J]. Allergy, 2018, 73(12): 2408-2411. 10.1111/all.13587.

[DOI] [PubMed] [Google Scholar]

9.

He LT, Yi WY, Huang X, et al.

Chronic urticaria: advances in understanding of the disease and clinical management[J]. Clin Rev Allergy Immunol, 2021, 61(3): 424-448. 10.1007/s12016-021-08886-x.

[DOI] [PubMed] [Google Scholar]

10.

Fiebiger E, Hammerschmid F, Stingl G, et al.

Anti-FcepsilonRIalpha autoantibodies in autoimmune-mediated disorders. Identification of a structure-function relationship[J]. J Clin Invest, 1998, 101(1): 243-251. 10.1172/JCI511.

[DOI] [PMC free article] [PubMed] [Google Scholar]

11.

Konstantinou GN, Asero R, Ferrer M, et al.

EAACI taskforce position paper: evidence for autoimmune urticaria and proposal for defining diagnostic criteria[J]. Allergy, 2013, 68(1): 27-36. 10.1111/all.12056

[DOI] [PubMed] [Google Scholar]

12.

Schoepke N, Asero R, Ellrich A, et al.

Biomarkers and clinical characteristics of autoimmune chronic spontaneous urticaria: results of the PURIST Study[J]. Allergy, 2019, 74(12): 2427-2436. 10.1111/all.13949.

[DOI] [PubMed] [Google Scholar]

13.

Altrichter S, Zampeli V, Ellrich A, et al.

IgM and IgA in addition to IgG autoantibodies against FcɛRIα are frequent and associated with disease markers of chronic spontaneous urticaria[J]. Allergy, 2020, 75(12): 3208-3215. 10.1111/all.14412.

[DOI] [PubMed] [Google Scholar]

14.

Kolkhir P, Altrichter S, Asero R, et al.

Autoimmune diseases are linked to type IIb autoimmune chronic spontaneous urticaria[J]. Allergy Asthma Immunol Res, 2021, 13(4): 545-559. 10.4168/aair.2021.13.4.545.

[DOI] [PMC free article] [PubMed] [Google Scholar]

15.

Zhang LM, Qiu L, Wu J, et al.

GWAS of chronic spontaneous urticaria reveals genetic overlap with autoimmune diseases, not atopic diseases[J]. J Invest Dermatol, 2023, 143(1): 67-77.e15. 10.1016/j.jid.2022.07.012.

[DOI] [PubMed] [Google Scholar]

16.

Gurish MF, Austen KF. Developmental origin and functional specialization of mast cell subsets[J]. Immunity, 2012, 37(1): 25-33. 10.1016/j.immuni.2012.07.003.

[DOI] [PubMed] [Google Scholar]

17.

Irani AA, Schechter NM, Craig SS, et al.

Two types of human mast cells that have distinct neutral protease compositions[J]. Proc Natl Acad Sci USA, 1986, 83(12): 4464-4468. 10.1073/pnas.83.12.4464.

[DOI] [PMC free article] [PubMed] [Google Scholar]

18.

Weidner N, Austen KF. Ultrastructural and immunohisto-chemical characterization of normal mast cells at multiple body sites[J]. J Invest Dermatol, 1991, 96(3): 26S-30S. [PubMed] [Google Scholar]

19.

Otsuka H, Inaba M, Fujikura T, et al.

Histochemical and functional characteristics of metachromatic cells in the nasal epithelium in allergic rhinitis: studies of nasal scrapings and their dispersed cells[J]. J Allergy Clin Immunol, 1995, 96(4): 528-536. 10.1016/s0091-6749(95)70297-0.

[DOI] [PubMed] [Google Scholar]

20.

Dahlin JS, Maurer M, Metcalfe DD, et al.

The ingenious mast cell: contemporary insights into mast cell behavior and function[J]. Allergy, 2022, 77(1): 83-99. 10.1111/all.14881.

[DOI] [PubMed] [Google Scholar]

21.

Fang XB, Li MM, He C, et al.

Plasma-derived exosomes in chronic spontaneous urticaria induce the production of mediators by human mast cells[J]. J Invest Dermatol, 2022, 142(11): 2998-3008.e5. 10.1016/j.jid.2022.03.037.

[DOI] [PubMed] [Google Scholar]

22.

Radonjic-Hoesli S, Hofmeier KS, Micaletto S, et al.

Urticaria and angioedema: an update on classification and pathogenesis[J]. Clin Rev Allergy Immunol, 2018, 54(1): 88-101. 10.1007/s12016-017-8628-1.

[DOI] [PubMed] [Google Scholar]

23.

Mao MY, Liu H, Yan SY, et al.

Plasma adenosine is linked to disease activity and response to treatment in patients with chronic spontaneous urticaria[J]. Allergy, 2021, 76(2): 571-573. 10.1111/all.14502.

[DOI] [PubMed] [Google Scholar]

24.

Wang Y, Yu M, Matsushita K, et al.

Dynamin-related protein 1 differentially regulates FcεRI- and substance P-induced mast cell activation[J]. J Allergy Clin Immunol, 2022, 150(5): 1228-1231.e5. 10.1016/j.jaci.2022.04.028.

[DOI] [PMC free article] [PubMed] [Google Scholar]

25.

Tang X, Rönnberg E, Säfholm J, et al.

Activation of succinate receptor 1 boosts human mast cell reactivity and allergic bronchoconstriction[J]. Allergy, 2022, 77(9): 2677-2687. 10.1111/all.15245.

[DOI] [PMC free article] [PubMed] [Google Scholar]

26.

Rauber MM, Pickert J, Holiangu L, et al.

Functional and phenotypic analysis of basophils allows determining distinct subtypes in patients with chronic urticaria[J]. Allergy, 2017, 72(12): 1904-1911. 10.1111/all.13215.

[DOI] [PubMed] [Google Scholar]

27.

Kishimoto I, Kambe N, Ly NTM, et al.

Basophil count is a sensitive marker for clinical progression in a chronic spontaneous urticaria patient treated with omalizumab[J]. Allergol Int, 2019, 68(3): 388-390. 10.1016/j.alit.2019.02.002.

[DOI] [PubMed] [Google Scholar]

28.

Grattan CE, Dawn G, Gibbs S, et al.

Blood basophil numbers in chronic ordinary urticaria and healthy controls: diurnal variation, influence of loratadine and prednisolone and relationship to disease activity[J]. Clin Exp Allergy, 2003, 33(3): 337-341. 10.1046/j.1365-2222.2003.01589.x.

[DOI] [PubMed] [Google Scholar]

29.

Saini SS, Omachi TA, Trzaskoma B, et al.

Effect of omalizumab on blood basophil counts in patients with chronic idiopathic/spontaneous urticaria[J]. J Invest Dermatol, 2017, 137(4): 958-961. 10.1016/j.jid.2016.11.025.

[DOI] [PubMed] [Google Scholar]

30.

Rijavec M, Košnik M, Koren A, et al.

A very low number of circulating basophils is predictive of a poor response to omalizumab in chronic spontaneous urticaria[J]. Allergy, 2021, 76(4): 1254-1257. 10.1111/all.14577.

[DOI] [PubMed] [Google Scholar]

31.

Puccetti A, Bason C, Simeoni S, et al.

In chronic idiopathic urticaria autoantibodies against Fc epsilonRII/CD23 induce histamine release via eosinophil activation[J]. Clin Exp Allergy, 2005, 35(12): 1599-1607. 10.1111/j.1365-2222.2005.02380.x.

[DOI] [PubMed] [Google Scholar]

32.

Altrichter S, Frischbutter S, Fok JS, et al.

The role of eosinophils in chronic spontaneous urticaria[J]. J Allergy Clin Immunol, 2020, 145(6): 1510-1516. 10.1016/j.jaci.2020.03.005.

[DOI] [PubMed] [Google Scholar]

33.

Kolkhir P, Church MK, Altrichter S, et al.

Eosinopenia, in chronic spontaneous urticaria, is associated with high disease activity, autoimmunity, and poor response to treatment[J]. J Allergy Clin Immunol Pract, 2020, 8(1): 318-325.e5. 10.1016/j.jaip.2019.08.025.

[DOI] [PubMed] [Google Scholar]

34.

Chen Q, Zhong H, Chen WC, et al.

Different expression patterns of plasma Th1-, Th2-, Th17- and Th22-related cytokines correlate with serum autoreactivity and allergen sensitivity in chronic spontaneous urticaria[J]. J Eur Acad Dermatol Venereol, 2018, 32(3): 441-448. 10.1111/jdv.14541.

[DOI] [PubMed] [Google Scholar]

35.

Lin W, Zhou QY, Liu CB, et al.

Increased plasma IL-17, IL-31, and IL-33 levels in chronic spontaneous urticaria[J]. Sci Rep, 2017, 7(1): 17797. 10.1038/s41598-017-18187-z.

[DOI] [PMC free article] [PubMed] [Google Scholar]

36.

Prosty C, Gabrielli S, Ben-Shoshan M, et al.

In silico identification of immune cell-types and pathways involved in chronic spontaneous urticaria[J]. Front Med, 2022, 9: 926753. 10.3389/fmed.2022.926753. [DOI] [PMC free article] [PubMed] [Google Scholar]

37.

Giménez-Arnau AM, DeMontojoye L, Asero R, et al.

The pathogenesis of chronic spontaneous urticaria: the role of infiltrating cells[J]. J Allergy Clin Immunol Pract, 2021, 9(6): 2195-2208. 10.1016/j.jaip.2021.03.033.

[DOI] [PubMed] [Google Scholar]

38.

Cop N, Ebo DG, Bridts CH, et al.

Influence of IL-6, IL-33, and TNF-α on human mast cell activation: lessons from single cell analysis by flow cytometry[J]. Cytometry B Clin Cytom, 2018, 94(3): 405-411. 10.1002/cyto.b.21547.

[DOI] [PubMed] [Google Scholar]

39.

Palomares O, Elewaut D, Irving PM, et al.

Regulatory T cells and immunoglobulin E: a new therapeutic link for autoimmunity?[J]. Allergy, 2022, 77(11): 3293-3308. 10.1111/all.15449.

[DOI] [PubMed] [Google Scholar]

40.

Gri G, Piconese S, Frossi B, et al.

CD4+CD25+ regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction[J]. Immunity, 2008, 29(5): 771-781. 10.1016/j.immuni.2008.08.018.

[DOI] [PMC free article] [PubMed] [Google Scholar]

41.

Gao CE, Chen WC, Liu WY, et al.

Pathogenic role of circulating CD4+CXCR5+ cell subpopulations in patients with chronic spontaneous urticarial[J]. Am J Transl Res, 2020, 12(8): 4434-4444.

[PMC free article] [PubMed] [Google Scholar]

42.

Zhou BJ, Li J, Liu RQ, et al.

The role of crosstalk of immune cells in pathogenesis of chronic spontaneous urticaria[J]. Front Immunol, 2022, 13: 879754. 10.3389/fimmu.2022.879754.

[DOI] [PMC free article] [PubMed] [Google Scholar]

43.

Grosicki M, Wójcik T, Chlopicki S, et al.

In vitro study of histamine and histamine receptor ligands influence on the adhesion of purified human eosinophils to endothelium[J]. Eur J Pharmacol, 2016, 777: 49-59. 10.1016/j.ejphar.2016.02.061.

[DOI] [PubMed] [Google Scholar]

44.

Oliver ET, Sterba PM, Devine K, et al.

Altered expression of chemoattractant receptor-homologous molecule expressed on T(H)2 cells on blood basophils and eosinophils in patients with chronic spontaneous urticaria[J]. J Allergy Clin Immunol, 2016, 137(1): 304-306.e1. 10.1016/j.jaci.2015.06.004.

[DOI] [PubMed] [Google Scholar]

45.

de Filippo K, Dudeck A, Hasenberg M, et al.

Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation[J]. Blood, 2013, 121(24): 4930-4937. 10.1182/blood-2013-02-486217.

[DOI] [PubMed] [Google Scholar]

46.

Kessel A, Bishara R, Amital A, et al.

Increased plasma levels of matrix metalloproteinase-9 are associated with the severity of chronic urticaria[J]. Clin Exp Allergy, 2005, 35(2): 221-225. 10.1111/j.1365-2222.2005.02168.x.

[DOI] [PubMed] [Google Scholar]

47.

Kabata H, Moro K, Koyasu S. The group 2 innate lymphoid cell (ILC2) regulatory network and its underlying mechanisms[J]. Immunol Rev, 2018, 286(1): 37-52. 10.1111/imr.12706.

[DOI] [PubMed] [Google Scholar]

48.

Olsson N, Taub DD, Nilsson G. Regulation of mast cell migration by T and T cytokines: identification of tumour necrosis factor-alpha and interleukin-4 as mast cell chemotaxins[J]. Scand J Immunol, 2004, 59(3): 267-272. 10.1111/j.0300-9475.2004.01397.x.

[DOI] [PubMed] [Google Scholar]

49.

Min B, Prout M, Hu-Li J, et al.

Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite[J]. J Exp Med, 2004, 200(4): 507-517. 10.1084/jem.20040590.

[DOI] [PMC free article] [PubMed] [Google Scholar]

50.

Santos JC, de Brito CA, Futata EA, et al.

Up-regulation of chemokine C-C ligand 2 (CCL2) and C-X-C chemokine 8 (CXCL8) expression by monocytes in chronic idiopathic urticaria[J]. Clin Exp Immunol, 2012, 167(1): 129-136. 10.1111/j.1365-2249.2011.04485.x.

[DOI] [PMC free article] [PubMed] [Google Scholar]

51.

de Montjoye L, Choteau M, Herman A, et al.

IL-6 and IL-1β expression is increased in autologous serum skin test of patients with chronic spontaneous urticaria[J]. Allergy, 2019, 74(12): 2522-2524. 10.1111/all.13928.

[DOI] [PubMed] [Google Scholar]

52.

Jordan WJ, Eskdale J, Srinivas S, et al.

Human interferon lambda-1 (IFN-lambda1/IL-29) modulates the Th1/Th2 response[J]. Genes Immun, 2007, 8(3): 254-261. 10.1038/sj.gene.6364382.

[DOI] [PubMed] [Google Scholar]

53.

Méndez-Enríquez E, Salomonsson M, Eriksson J, et al.

IgE cross-linking induces activation of human and mouse mast cell progenitors[J]. J Allergy Clin Immunol, 2022, 149(4): 1458-1463. 10.1016/j.jaci.2021.08.019.

[DOI] [PubMed] [Google Scholar]

54.

Miyake K, Shibata S, Yoshikawa S, et al.

Basophils and their effector molecules in allergic disorders[J]. Allergy, 2021, 76(6): 1693-1706. 10.1111/all.14662.

[DOI] [PubMed] [Google Scholar]

55.

Mostmans Y, De Smedt K, Richert B, et al.

Markers for the involvement of endothelial cells and the coagulation system in chronic urticaria: a systematic review[J]. Allergy, 2021, 76(10): 2998-3016. 10.1111/all.14828. [DOI] [PubMed] [Google Scholar]

56.

Ruppenstein A, Limberg MM, Loser K, et al.

Involvement of neuro-immune interactions in pruritus with special focus on receptor expressions[J]. Front Med, 2021, 8: 627985. 10.3389/fmed.2021.627985. [DOI] [PMC free article] [PubMed] [Google Scholar]

57.

Kabata H, Artis D. Neuro-immune crosstalk and allergic inflammation[J]. J Clin Invest, 2019, 129(4): 1475-1482. 10.1172/JCI124609.

[DOI] [PMC free article] [PubMed] [Google Scholar]

58.

Fujisawa D, Kashiwakura J, Kita H, et al.

Expression of Mas-related gene X2 on mast cells is upregulated in the skin of patients with severe chronic urticaria[J]. J Allergy Clin Immunol, 2014, 134(3): 622-633.e9. 10.1016/j.jaci.2014.05.004.

[DOI] [PubMed] [Google Scholar]

59.

Shtessel M, Limjunyawong N, Oliver ET, et al.

MRGPRX2 activation causes increased skin reactivity in patients with chronic spontaneous urticaria[J]. J Invest Dermatol, 2021, 141(3): 678-681.e2. 10.1016/j.jid.2020.06.030.

[DOI] [PMC free article] [PubMed] [Google Scholar]

60.

Huang YZ, Xiao Y, Zhang XY, et al.

A meta-analysis of observational studies on the association of chronic urticaria with symptoms of depression and anxiety[J]. Front Med, 2020, 7: 39. 10.3389/fmed.2020.00039. [DOI] [PMC free article] [PubMed] [Google Scholar]

61.

Huang YZ, Xiao Y, Jing DR, et al.

Association of chronic spontaneous urticaria with anxiety and depression in adolescents: a mediation analysis[J]. Front Psychiatry, 2021, 12: 655802. 10.3389/fpsyt.2021.655802.

[DOI] [PMC free article] [PubMed] [Google Scholar]

62.

Wang DT, Guo SP, He HX, et al.

Gut microbiome and serum metabolome analyses identify unsaturated fatty acids and butanoate metabolism induced by gut microbiota in patients with chronic spontaneous urticaria[J]. Front Cell Infect Microbiol, 2020, 10: 24. 10.3389/fcimb.2020.00024.

[DOI] [PMC free article] [PubMed] [Google Scholar]

63.

Wang X, Yi WY, He LT, et al.

Abnormalities in gut microbiota and metabolism in patients with chronic spontaneous urticaria[J]. Front Immunol, 2021, 12: 691304. 10.3389/fimmu.2021.691304.

[DOI] [PMC free article] [PubMed] [Google Scholar]

64.

Liu RQ, Peng C, Jing DR, et al.

Biomarkers of gut microbiota in chronic spontaneous urticaria and symptomatic dermographism[J]. Front Cell Infect Microbiol, 2021, 11: 703126. 10.3389/fcimb.2021.703126.

[DOI] [PMC free article] [PubMed] [Google Scholar]

65.

Li J, Li LQ, Liu RQ, et al.

Integrative lipidomic features identify plasma lipid signatures in chronic urticaria[J]. Front Immunol, 2022, 13: 933312. 10.3389/fimmu.2022.933312.

[DOI] [PMC free article] [PubMed] [Google Scholar]

66.

Liu RQ, Peng C, Jing DR, et al.

Lachnospira is a signature of antihistamine efficacy in chronic spontaneous urticaria[J]. Exp Dermatol, 2022, 31(2): 242-247. 10.1111/exd.14460.

[DOI] [PubMed] [Google Scholar]

67.

Li J, Guo AY, Chen WQ, et al.

Association of ORAI1 gene polymorphisms with chronic spontaneous urticaria and the efficacy of the nonsedating H1 antihistamine desloratadine[J]. J Allergy Clin Immunol, 2017, 139(4): 1386-1388.e9. 10.1016/j.jaci.2016.10.017.

[DOI] [PubMed] [Google Scholar]

68.

Yan SY, Chen WQ, Wen S, et al.

Influence of component 5a receptor 1 (C5AR1)-1330T/G polymorphism on nonsedating H1-antihistamines therapy in Chinese patients with chronic spontaneous urticaria[J]. J Dermatol Sci, 2014, 76(3): 240-245. 10.1016/j.jdermsci.2014.09.012.

[DOI] [PubMed] [Google Scholar]

69.

Guo AY, Zhu W, Zhang C, et al.

Association of FCER1A genetic polymorphisms with risk for chronic spontaneous urticaria and efficacy of nonsedating H1-antihistamines in Chinese patients[J]. Arch Dermatol Res, 2015, 307(2): 183-190. 10.1007/s00403-014-1525-z.

[DOI] [PubMed] [Google Scholar]

70.

Qi YM, Zhang LM, Yang XN, et al.

Genome-wide DNA methylation profile in whole blood of patients with chronic spontaneous urticaria[J]. Front Immunol, 2021, 12: 681714. 10.3389/fimmu.2021.681714.

[DOI] [PMC free article] [PubMed] [Google Scholar]

71.

鲁楠, 谭兴友, 刘香, 等. 微RNA单核苷酸多态性与慢性自发性荨麻疹发病风险的关联分析[J]. 中华皮肤科杂志, 2022, 55(9): 806-809. 10.35541/cjd.20210780. 35032071

[DOI] [Google Scholar];

LU Nan, TAN Xingyou, LIU Xiang, et al.

Association of single nucleotide polymorphisms in microRNAs with the risk of chronic spontaneous urticaria[J]. Chinese Journal of Dermatology, 2022, 55(9): 806-809. 10.35541/cjd.20210780. [DOI] [Google Scholar]

72.

Li J, Chen WQ, Peng C, et al.

Human H1 receptor (HRH1) gene polymorphism is associated with the severity of side effects after desloratadine treatment in Chinese patients with chronic spontaneous uticaria[J]. Pharmacogenomics J, 2020, 20(1): 87-93. 10.1038/s41397-019-0094-0.

[DOI] [PubMed] [Google Scholar]

73.

Wang Y, Tang N, Mao MY, et al.

Fine particulate matter (PM2.5) promotes IgE-mediated mast cell activation through ROS/Gadd45b/JNK axis[J]. J Dermatol Sci, 2021, 102(1): 47-57. 10.1016/j.jdermsci.2021.02.004.

[DOI] [PubMed] [Google Scholar]

74.

Domingo JL, Nadal M. Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water: a review of the recent scientific literature[J]. Environ Res, 2019, 177: 108648. 10.1016/j.envres.2019.108648.

[DOI] [PubMed] [Google Scholar]

75.

Shen MX, Xiao Y, Huang YZ, et al.

Perfluoroalkyl substances are linked to incident chronic spontaneous urticaria: a nested case-control study[J]. Chemosphere, 2022, 287(Pt 3): 132358. 10.1016/j.chemosphere.2021.132358.

[DOI] [PubMed] [Google Scholar]

76.

Serhan N, Basso L, Sibilano R, et al.

House dust mites activate nociceptor-mast cell clusters to drive type 2 skin inflammation[J]. Nat Immunol, 2019, 20(11): 1435-1443. 10.1038/s41590-019-0493-z.

[DOI] [PMC free article] [PubMed] [Google Scholar]

77.

Ho B, Greenlaw K, Al Tuwaijri A, et al.

X chromosome dosage and presence of SRY shape sex-specific differences in DNA methylation at an autosomal region in human cells[J]. Biol Sex Differ, 2018, 9(1): 10. 10.1186/s13293-018-0169-7.

[DOI] [PMC free article] [PubMed] [Google Scholar]

78.

Pickard JM, Zeng MY, Caruso R, et al.

Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease[J]. Immunol Rev, 2017, 279(1): 70-89. 10.1111/imr.12567.

[DOI] [PMC free article] [PubMed] [Google Scholar]

79.

Chiaroni-Clarke RC, Munro JE, Ellis JA. Sex bias in paediatric autoimmune disease-Not just about sex hormones?[J]. J Autoimmun, 2016, 69: 12-23. 10.1016/j.jaut.2016.02.011.

[DOI] [PubMed] [Google Scholar]

80.

Yanase Y, Matsuo Y, Takahagi S, et al.

Coagulation factors induce human skin mast cell and basophil degranulation via activation of complement 5 and the C5a receptor[J]. J Allergy Clin Immunol, 2021, 147(3): 1101-1104.e7. 10.1016/j.jaci.2020.08.018.

[DOI] [PubMed] [Google Scholar]

81.

Zhao JW, Ping JD, Wang YF, et al.

Vitamin D suppress the production of vascular endothelial growth factor in mast cell by inhibiting PI3K/Akt/p38 MAPK/HIF-1α pathway in chronic spontaneous urticaria[J]. Clin Immunol, 2020, 215: 108444. 10.1016/j.clim.2020.108444.

[DOI] [PubMed] [Google Scholar]

82.

Altrichter S, Hawro T, Liedtke M, et al.

In chronic spontaneous urticaria, IgE against staphylococcal enterotoxins is common and functional[J]. Allergy, 2018, 73(7): 1497-1504. 10.1111/all.13381.

[DOI] [PubMed] [Google Scholar]

83.

Kasperska-Zając A, Damasiewicz-Bodzek A, Bieniek K, et al.

Elevated circulating heat shock protein 70 and its antibody concentrations in chronic spontaneous urticaria[J]. Int J Immunopathol Pharmacol, 2018, 31: 394632017750440. 10.1177/0394632017750440.

[DOI] [PMC free article] [PubMed] [Google Scholar]

84.

Matei C, Georgescu SR, Nicolae I, et al.

Variations of thiol-disulfide homeostasis parameters after treatment with H1-antihistamines in patients with chronic spontaneous urticaria[J]. J Clin Med, 2021, 10(13): 2980. 10.3390/jcm10132980.

[DOI] [PMC free article] [PubMed] [Google Scholar]

85.

Kulthanan K, Church MK, Grekowitz EM, et al.

Evidence for histamine release in chronic inducible urticaria-A systematic review[J]. Front Immunol, 2022, 13: 901851. 10.3389/fimmu.2022.901851.

[DOI] [PMC free article] [PubMed] [Google Scholar]

86.

Liu RQ, Peng C, Jing DR, et al.

Identification of gut microbiota signatures in symptomatic dermographism[J]. Exp Dermatol, 2021, 30(12): 1794-1799. 10.1111/exd.14326.

[DOI] [PubMed] [Google Scholar]

87.

Maurer M, Metz M, Brehler R, et al.

Omalizumab treatment in patients with chronic inducible urticaria: a systematic review of published evidence[J]. J Allergy Clin Immunol, 2018, 141(2): 638-649. 10.1016/j.jaci.2017.06.032.

[DOI] [PubMed] [Google Scholar]

88.

Yücel MB, Ertas R, Türk M, et al.

Food-dependent and food-exacerbated symptomatic dermographism: new variants of symptomatic dermographism[J]. J Allergy Clin Immunol, 2022, 149(2): 788-790. 10.1016/j.jaci.2021.07.030.

[DOI] [PubMed] [Google Scholar]

89.

Fukunaga A, Washio K, Hatakeyama M, et al.

Cholinergic urticaria: epidemiology, physiopathology, new categorization, and management[J]. Clin Auton Res, 2018, 28(1): 103-113. 10.1007/s10286-017-0418-6.

[DOI] [PubMed] [Google Scholar]

90.

Wang YY, Scheffel J, Vera CA, et al.

Impaired sweating in patients with cholinergic urticaria is linked to low expression of acetylcholine receptor CHRM3 and acetylcholine esterase in sweat glands[J]. Front Immunol, 2022, 13: 955161. 10.3389/fimmu.2022.955161.

[DOI] [PMC free article] [PubMed] [Google Scholar]

91.

Bizjak M, Košnik M, Terhorst-Molawi D, et al.

Cold agglutinins and cryoglobulins associate with clinical and laboratory parameters of cold urticaria[J]. Front Immunol, 2021, 12: 665491. 10.3389/fimmu.2021.665491.

[DOI] [PMC free article] [PubMed] [Google Scholar]

92.

Kulthanan K, Tuchinda P, Chularojanamontri L, et al.

Food-dependent cold urticaria: a new variant of physical urticaria[J]. J Allergy Clin Immunol Pract, 2018, 6(4): 1400-1402. 10.1016/j.jaip.2018.04.010.

[DOI] [PubMed] [Google Scholar]

93.

Weller K. Heat urticaria-easy to diagnose but also to misdiagnose[J]. Br J Dermatol, 2016, 175(3): 454-455. 10.1111/bjd.14729.

[DOI] [PubMed] [Google Scholar]

94.

McSweeney SM, Sarkany R, Fassihi H, et al.

Pathogenesis of solar urticaria: classic perspectives and emerging concepts[J]. Exp Dermatol, 2022, 31(4): 586-593. 10.1111/exd.14493.

[DOI] [PubMed] [Google Scholar]

95.

Zhao ZT, Reimann S, Wang S, et al.

Ordinary vibratory angioedema is not generally associated with ADGRE2 mutation[J]. J Allergy Clin Immunol, 2019, 143(3): 1246-1248.e4. 10.1016/j.jaci.2018.10.049.

[DOI] [PubMed] [Google Scholar]

96.

Fukumoto T, Ogura K, Fukunaga A, et al.

Aquagenic urticaria: severe extra-cutaneous symptoms following cold water exposure[J]. Allergol Int, 2018, 67(2): 295-297. 10.1016/j.alit.2017.10.007.

[DOI] [PubMed] [Google Scholar]

97.

Kulthanan K, Ungprasert P, Tuchinda P, et al.

Delayed pressure urticaria: a systematic review of treatment options[J]. J Allergy Clin Immunol Pract, 2020, 8(6): 2035-2049.e5. 10.1016/j.jaip.2020.03.004.

[DOI] [PubMed] [Google Scholar]

98.

Gimenez-Arnau AM, Maibach H. Contact urticaria[J]. Immunol Allergy Clin North Am, 2021, 41(3): 467-480. 10.1016/j.iac.2021.04.007.

[DOI] [PubMed] [Google Scholar]

相关推荐

梦米7Plus手机综合评测(探索梦米7Plus手机的功能与性能,助您做出明智的购买决策)
喜马拉雅
office365ios版本

喜马拉雅

📅 08-14 👁️ 3477
射手卡|多点开花!B组首轮英格兰6-2完胜伊朗
365BET体育投注官网

射手卡|多点开花!B组首轮英格兰6-2完胜伊朗

📅 06-28 👁️ 9373
人不能近亲结婚,那动物呢?
office365ios版本

人不能近亲结婚,那动物呢?

📅 07-15 👁️ 7267